The team has delivered a potential solution to this problem in the form of a graphene-oxide-coated ‘nanosheet’ that, when placed in between the two electrodes of a lithium-metal battery, prevents uneven plating of lithium and allows the battery to safely function for hundreds of charge–discharge cycles.
“Our findings demonstrate that two-dimensional materials—in this case, graphene oxide—can help regulate lithium deposition in such a way that extends the life of lithium-metal batteries,” said Reza Shahbazian-Yassar, associate professor of mechanical and industrial engineering in the UIC College of Engineering.
In lithium-ion batteries, a separator, usually made of a porous polymer or glass ceramic fibers, is placed in the electrolyte. The separator allows lithium ions to flow through while keeping the other components blocked, which prevents electrical shorts that can lead to fires.
The team used a modified separator in a lithium-metal battery to modulate the flow of lithium ions and control the rate of lithium deposition, with the aim of preventing dendrites from forming. They spray-coated a fiberglass separator with graphene oxide, producing a nanosheet.