欢迎访问科技大田石墨烯产业专题!
科技大田-石墨烯产业专题>>资讯>>前沿资讯>>国外资讯>>内容阅读
Researchers find the exact balance in which graphene coatings can promote hydrogen evolution reaction
A collaboration led by the University of Tsukuba has recently optimized an approach to increase the stability of catalysts used in the hydrogen evolution reaction without significantly sacrificing activity. The team found that coating catalyst nanoparticles with an optimal number of layers of graphene raised nanoparticle durability while allowing the nanoparticles to retain their catalytic activity. The study was reported in ACS Energy Letters.

"We optimized the balance between the number of graphene layers coating the nanoparticles and their catalytic activity," study first author Kailong Hu says. "To do this, we had to precisely control the number of graphene layers coating the nanoparticles, which we achieved by carefully regulating the deposition time of graphene on the nanoparticles."

A series of nanoparticle samples coated with different numbers of graphene layers was fabricated, characterized, and then their catalytic activity in the hydrogen evolution reaction was determined. The catalyst nanoparticles coated with the optimal number of graphene layers, which was just three to five layers, displayed similar activity in the hydrogen evolution reaction to that of an expensive platinum-based catalyst. Importantly, these nanoparticles also exhibited high stability; the graphene coating prevented the metal nanoparticles from dissolving in the acidic reaction solution.

The researchers conducted theoretical calculations to support their experimental findings. The results corroborated the relationships between graphene layer number, chemical stability, and catalytic activity of the nanoparticles indicated by the experimental data. That is, the nanoparticles coated with less than three graphene layers showed higher catalytic activity than those coated with three to five layers but this came at the expense of durability; the former showed poorer chemical stability than the latter.

"Our results pave the way for rational design of stable, cheap catalysts for large-scale hydrogen production at hydrogen stations by on-site polymer electrolyte membrane electrolysis under acidic conditions," co-author Yoshikazu Ito explains. The team's findings may bring us a step closer to the realization of a clean sustainable future using hydrogen as a fuel source.

Source: Eurekalert Graphene Catalog, find your graphene materials here! Tags:Graphene applicationsFuel CellsGraphene coatingTechnical / Research
Copyright 版权所有 Copyright 2013-2014 福建省云创集成科技服务有限公司 共建合作:中国协同创新网
All Rights Reserved. 运营维护:三明市明网网络信息技术有限公司 业务咨询:0598-8233595 0598-5831286 技术咨询:0598-8915168