欢迎访问科技大田石墨烯产业专题!
科技大田-石墨烯产业专题>>资讯>>前沿资讯>>国外资讯>>内容阅读
Chalmers team demonstrated graphene films with higher thermal conductivity than that of graphite films
Researchers at Chalmers University of Technology in Sweden, have developed a graphene assembled film that has over 60% higher thermal conductivity than graphite film – despite the fact that graphite consists of many layers of graphene. The graphene film shows great potential as a novel heat spreading material for form-factor driven electronics and other high power-driven systems. The IP of the high-quality manufacturing process for the graphene film belongs to SHT Smart High Tech AB, a spin-off company from Chalmers, which is going to focus on the commercialization of the technology.

Until now, many scientists in the graphene research community have assumed that graphene assembled film cannot have higher thermal conductivity than graphite film. Single layer graphene has a thermal conductivity between 3500 and 5000 W/mK. If you put several graphene layers together, then it theoretically becomes graphite.

Today, graphite films, which are useful for heat dissipation and spreading in mobile phones and other power devices, have a thermal conductivity of up to 1950 W/mK. Therefore, the graphene-assembled film should not have higher thermal conductivity than this. Research scientists at Chalmers University of Technology have recently changed this conception by discovering that the thermal conductivity of graphene assembled film can reach up to 3200 W/mK.

The manufacturing method of the graphene film is based on simultaneous graphene oxide film formation and reduction, on aluminum substrate, dry-bubbling film separation, followed by high-temperature treatment as well as mechanical pressing. These conditions enable the formation of the graphene film with large grain size, good atomic alignment, thin-film structure, and low interlayer binding energy. All these features have great benefit for the transfer of both high-frequency diffusive phonons and low-frequency ballistic phonons, and thereby lead to the improvement of in-plane thermal conductivity of the graphene film. Phonons are quantum particles that describe the thermal conductivity of a material.

Source: Chalmers UniversitySmall Graphene Oxide market report Tags:Graphene applicationsGraphene thermal conductivityGraphene OxideGraphiteTechnical / Research
Copyright 版权所有 Copyright 2013-2014 福建省云创集成科技服务有限公司 共建合作:中国协同创新网
All Rights Reserved. 运营维护:三明市明网网络信息技术有限公司 业务咨询:0598-8233595 0598-5831286 技术咨询:0598-8915168