"Graphene's usefulness on Earth has already been established in the last decade. It is now an opportune time to expand its prospects for use in space applications—an area touted as being the most challenging to modern technology—and shift the paradigm of materials science. Space is the final frontier for graphene research, and I believe this is the first time that graphene has entered the stratosphere," said project leader Professor Antonio Castro Neto, Director of NUS CA2DM.
"To move a spacecraft over long distances in space, huge accelerations and speeds which are only possible with very low mass equipment are needed. Graphene is the ideal material as it is among the lightest, yet strongest, functional materials we have. In addition, the high electronic performance of graphene makes it a prime candidate to handle the lack of oxygen and low temperatures in space," explained Prof Castro Neto.
To put graphene to the test, a team led by Professor Barbaros Özyilmaz, Head of Graphene Research at NUS CA2DM, prepared the material by coating a substrate with a single layer of graphene which was about 0.5 nanometers thick. The sample was securely assembled within a Boreal Space 'Wayfinder—Mini' CubeSat, and placed in the payload enclosure of the sounding rocket.
The spacecraft was launched in the morning of 30 June 2018, over the Mojave Desert in the United States. The Boreal Space launch team was responsible for the payload launch support during take-off, nose cone separation, monitoring during flight, parachuting back to earth, impact and recovery.
During the launch, the spacecraft was sent into suborbital environment, and the graphene material was subjected to harsh conditions like rapid acceleration, vibration, acoustic shock, strong pressure and a wide range in temperature fluctuations. The sample re-entered Earth's atmosphere after a 71-second flight, parachuting to a landing in the Mojave Desert.