欢迎访问科技大田石墨烯产业专题!
科技大田-石墨烯产业专题>>资讯>>前沿资讯>>国外资讯>>内容阅读
A new method may enable 3D printing complex structures with graphene
Researchers from Virginia Tech and Lawrence Livermore National Laboratory have developed a new way to 3D print with graphene. Graphene has previously been used in extrusion-based processes to print single sheets and basic structures at a resolution of around 100 microns, but this latest research shows it is also possible to use a stereolithography-based technique to print “pretty much any desired structure” down to 10 microns, close to the size of actual graphene sheets. The ability to 3D print functional parts in graphene could benefit many industries and products.

Graphene aerogel for 3d printing image

“Now a designer can design three-dimensional topology comprised of interconnected graphene sheets,” said Xiaoyu “Rayne” Zheng, assistant professor with the Department of Mechanical Engineering in the College of Engineering and director of the Advanced Manufacturing and Metamaterials Lab. “This new design and manufacturing freedom will lead to optimization of strength, conductivity, mass transport, strength, and weight density that are not achievable in graphene aerogels.”

This project began three years ago, led by Ryan Hensleigh during an internship at the Lawrence Livermore National Laboratory where he worked with Zheng, then a member of the technical staff at the lab. Hensleigh started with graphene oxide, crosslinking the sheets to form a porous hydrogel. Breaking the graphene oxide hydrogel with ultrasound and adding light-sensitive acrylate polymers, Hensleigh used projection micro-stereolithography to create the desired solid 3D structure with the graphene oxide trapped in the acrylate polymer. Hensleigh then placed the 3D structure in a furnace to burn off the polymers and fuse the object together, leaving behind a pure and lightweight graphene aerogel.

Zheng commented that this technique allowed the team to engineer layers of graphene into any desired freeform shape with a high resolution. “We’ve been able to show you can make a complex, three-dimensional architecture of graphene while still preserving some of its intrinsic prime properties,” Zheng said. “Usually when you try to 3D print graphene or scale up, you lose most of their lucrative mechanical properties found in its single sheet form.”

Copyright 版权所有 Copyright 2013-2014 福建省云创集成科技服务有限公司 共建合作:中国协同创新网
All Rights Reserved. 运营维护:三明市明网网络信息技术有限公司 业务咨询:0598-8233595 0598-5831286 技术咨询:0598-8915168