欢迎访问科技大田石墨烯产业专题!
科技大田-石墨烯产业专题>>资讯>>前沿资讯>>国外资讯>>内容阅读
Greek researchers develop laser-based technique for drilling holes in graphene
Researchers from the Foundation of Research and Technology-Hellas, Patras, Greece and Aristotle University of Thessaloniki, Greece have developed a technique for creating nanopores in CVD grown graphene. The technique is based on femtosecond (fs) laser treatment of graphene.

Greek team drills holes in graphene using laser image

CVD graphene is placed onto Si/SiO2 using conventional dry transferring techniques. Then, it is treated in air with 80 fs laser pulses at high repetition rate. By focusing the barrage of fs laser pulses onto the graphene, circular patterns are formed.

The circular patterns are formed due to the synergy of thermal and ablation effects, occurring in different time scales and affecting different regions of graphene within the spot of the Gaussian beam.

The ablation effects destroy the graphene network forming pores with diameters ranging from a few nm up to 70 nm, an order of magnitude lower than the diffraction limit. Pore diameters and their aerial density are strongly dependent on the laser treatment parameters (laser wavelength, power, focusing, and irradiation time). Yet, thermal effects become important due the high repetition rate of the fs laser, resulting in graphene inflation of a region around the ablation area periphery).

By adjusting focus, laser power and exposure time, the optimization of the nanopore production process can be achieved. The proposed method can be easily scaled up for creating porous graphene membranes in various area scales from μm2 up to m2 provided that the quality of the transferred CVD graphene is exceptional.



Copyright 版权所有 Copyright 2013-2014 福建省云创集成科技服务有限公司 共建合作:中国协同创新网
All Rights Reserved. 运营维护:三明市明网网络信息技术有限公司 业务咨询:0598-8233595 0598-5831286 技术咨询:0598-8915168