“Our propulsion and physics researchers came together to focus on a material that has not previously been used in rocket propulsion, and it is demonstrating strong results,” said Li Qiao, an associate professor of aeronautics and astronautics in Purdue’s College of Engineering.
The research team, led by Qiao, developed methods of making and using compositions with solid fuel loaded on highly conductive, highly porous graphene foams for enhanced burn rates for the loaded solid fuel. They wanted to maximize the catalytic effect of metal oxide additives commonly used in solid propellant to enhance decomposition.
The graphene foam structures are also thermally stable, even at high temperatures, and can be reused. The developed compositions provide significantly improved burn rate and reusability.
Qiao said the graphene foam works well for solid propellants because it is super lightweight and highly porous, which means it has many holes in which scientists can pour fuel to help ignite a rocket launch.
The graphene foam has a 3D, interconnected structure to allow a more efficient thermal transport pathway for heat to quickly spread and ignite the propellant.